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ABSTRACT 

The numerical stability of conventional implicit algorithms of the 

approximate factorization type as applied to two-dimensional and three- 

dimensional hyperbolic systems is analyzed. The unconditional instability of 

these methods f o r  the three-dimensional wave equation and Euler‘s equations of 

gas dynamics is proven and a modified scheme is proposed which is 

unconditionally stable for the scalar wave equation. Analytical results are 

verified by numerical experimentation. 
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1. INTRODUCTION 

In recent years there has been an increased interest in numerical 

solution of the time-dependent Euler equations in two and three spatial 

dimensions. Because of stability restrictions associated with explicit 

finite-difference methods, renewed attention has been paid to implicit 

methods. These methods, in their primitive form, require a prohibitive amount 

of computational effort per time-step. This difficulty is circumvented by 

resorting to approximate factorizations such as the Beam-Warming scheme [2]. 

Beam and Warming employed what is known as the delta-form. This is done in 

order to avoid, as one marches to steady-state, the time-step dependent 

splitting errors. Their approach produces a scheme which is analogous in 

structure to the one proposed by Douglas and Gunn for the parabolic case 

[3]. In the two-dimensional case, their scheme has been proven to be 

efficient and second-order accurate in space and (linearly) stable. 

Unfortunately, this scheme is unstable in three-dimensions for the (scalar) 

linear wave equation, as shown by Dwoyer and Thames [4] and Warming and Beam 

[5]. This is also true for the full three-dimensional system of the Euler 

equatiexs as will be demmstrated l a t e r .  

The present effort was directed towards developing an implicit scheme for 

hyperbolic equations which will be stable in three dimensions and yet be free 

of splitting-errors. A natural starting point was the LODQ method presented 

in [4] for removal of the splitting-error inherent in locally one-dimensional 

algorithms (LOD) thereby presenting and alternative to the delta-form of Ref. 

2. However, as shown in [ 4 ] ,  the LODQ when applied to the three-dimensional 

wave equation was also unstable, just like the Beam and Warming scheme. This 

result is not surprising since, as was shown in [ 4 ] ,  the two alternatives 

discussed above (Beam-Warming and LODQ) have the same amplification matrix. 
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In Section 2, we show how the unstable three-dimensional toDQ can be 

stabilized without changing or adding to the implicit part of the algorithm. 

We also show how the delta-form Beam-Warming algorithm can be suitably 

modified. In Section 3 we discuss programing aspects of the new algorithm 

while in Section 4 numerical evidence is presented, for the three-dimensional 

linear wave equation case, that the method is stable and retains its second- 

order accuracy. While the present synthesis of the scheme is immediately 

applicable to a nonlinear hyperbolic system its analysis and confirming 

computations were carried out for the linear scalar case. Work is presently 

being carried out leading to application to the full Euler system of fluid 

dynamics. The results will be presented in a subsequent report. 

2. THE ALGORITHM AND ITS STABILITY 

Consider first the two-dimensional hyperbolic set 

-5 

where U, F(?) and G($) are m-component vectors; A and B are, 

respectively, the Jacobians aF/aU and aG/aU, assumed to be simultaneously 
L A  A 2  

symmetrizable. This assumption is valid, e.g., for Euler's equations. The 

standard, approximate-factored, form of the Backward Euler algorithm applied 

to (2.1) takes the form 

(I - AtA6xpx)(I - AtB6 p )Un+' = Un 
Y Y j,k j,k' 

where Un = U(jAx,kAy,nAt) is the solution vector described over a 
j ,k 



rectangular mesh, and 6 and ux are respectively a differencing and 
X 

1 /Ax, n 
('j+ 1/2 ,k-';- l/2 ,k averaging operators given by 6 Un = 

x j,k 
+ un ) 12. Analogous definitions hold for 

= ";+ 112 ,k j- '12 ,k 
F! un 
x j,k 

6 and LI . 
Y Y 

That (2.2) will, at steady-state, yield a result which is At-dependent 

is easily seen by writing it as 

The last term on the right-hand side is the splitting error, and it becomes 

unacceptable as larger At's are utilized in the time-advance. In three 

dimensions the splitting error is proportional to At 2 

In order to remove the splitting error, one may use any of several 

strategies - we will briefly review two of them. In the delta-form, [21 ,  one 

uses instead of (2.2) 

( I-aAtAGxpX) (I-aAtB6 p ) (Un+l-Un ) = At(A6xpx + B6 LI )Un, (2.4) 
Y Y j , k  j , k  Y Y  

where a is a free parameter (usually 1/2< a < 1). 

If we achieve convergence, then indeed the right-hand side of (2.4) 

solves (to second-order in the spatial coordinates) the steady-state 

operator. Another approach (LODQ) was presented in Ref. [41. The "given" 

data at any time level is designated On One then first advanced 

temporally by using the standard Backward Euler 
'1 rk' 

n+l - n - ( l-aAtA6xux) ( 1-aAtBb LI )U Y Y j , k  Q j , k  ' 
(2.5a) 
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and follows it by an explicit step 

n+l + At(A6 p + B6 p )Un+' . 
Q j , k  = ':,k x x  Y Y j , k  

(2.5b) 

n+l is the 
Q j  ,k Un+' and not Clearly, if steady state is achieved then 

(second-order accurate) solution to the steady-state operator. 
j ,k 

In the scalar case ( 2 . 4 )  and (2.5) are equivalent, as an examination of 

their respective amplification factors will show. For this case it is also 

easy to establish stability, see [ 4 ] .  

In the three-dimensional case, the situation is different. Both the 

delta-form of the Backward Euler scheme and the LODQ form are unconditionally 

unstable for a general scalar case and also, more importantly, in the case of 

the system of Euler's equations. This will now be demonstrated. The three- 

dimensional Euler equations for gas-dynamics may be written as follows: 

3 3 

- +  a7 A-+ a7 B-+ av C-- av - 0, 
at ax aY az 

where V is the column vector (p,u,v,w,p) and the coefficient matrices for 

an ideal gas are given by: 

v o p o o  

(2.7) 
o o o v o  
0 o y p  0 v 

The various parameters and dependent variables p,u,v,w,p and Y are, 

respectively the density, the x, y, and z components of velocity, the 

pressure and the ratio of specific heats at constant pressure and volume. 
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The matrix coefficients, A ,  B, and C are simultaneously symmetrizable 

via a similarity transformation 111. It is given by: 

where c = (Yp/p) 'I2 is the speed of sound and B = 42(y-1). The form of the 

symmetrized coefficients is important for demonstrating the numerical 

instability of the scheme, and so they are presented explicitly herewith: 

c = s  -1 c s =  l o  0 0 w 0 0 I .  O 

a 
1 0  c/fi 0 

For the purpose of (linear) stability analysis, one may consider 

matrix coefficients as locally constant and then (2.6) takes the form 

the 

(2.10) 

- 1-L 2 
with U = S V. The delta-form of the approximate-factorization Backward 

Euler scheme corresponding to ( 2 . 4 )  is then 
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1 +I+ 1 
(I + aAtAsGxux)(I + a A t B  6 u ) ( I  + a A t C  6 p ) ( u ~ , ~ , ~ -  i;" 

S Y Y  s z z  j , k ,  1 

= - A t ( A 6 u  + B 6 p  + C ~ ! . I ) *  
s x x s y y s z z j , k , l  (2.11) 

Symbolical ly ,  we m y  rewrite (2.11) as (omi t t i ng  s u b s c r i p t s  on t h e  U's): 

(2.12) L(?+' -3) = RU -h , 

wi th  obvious d e f i n i t i o n s  of t h e  ma t r ix  o p e r a t o r s  L and R. C l e a r l y ,  t h e  

a m p l i f i c a t i o n  ma t r ix  for t h e  a lgo r i thm rep resen ted  by (2.11) is 

(2.13) 

n A 

where L and R are obta ined  by e v a l u a t i n g  t h e  elements  of L and R i n  

F o u r i e r  space. The LODQ a l g o r i t h m i c  d i s c r e t i z a t i o n  of (2.10) corresponding t o  

(2.12) i s  

(2.14a) 

(2.14b) 

l ead ing  t o  an a m p l i f i c a t i o n  ma t r ix  of t h e  form 

A?. 

G~ = I + R L - ~  . (2.15) 

Note tha t  on ly  i n  the  s c a l a r  case ( o r  i n  t h e  u n l i k e l y  even t  t h a t  L-l  

Nonethe less ,  we s h a l l  now show t h a t  for t h e  and R commute) is  GA = G 

system of the gas-dynamic equa t ions  both  t h e  three-dimensional  Beam-Warming 

a lgo r i thm (2,13),  and t h e  LODQ one (2.14),  are u n s t a b l e .  We s t a r t  by n o t i n g  

Q' 
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t h a t  

and l e f t  columns are ze ro  except  t h e  element i n  t h e  upper  l e f t  co rne r ;  i.e., 

As, Bs, and Cs have t h e  p rope r ty  t h a t  a l l  t h e  e lements  i n  t h e i r  top  row 

N I 
cS 

, cs = 0 I: - 

(2.16) 

c) 

' There fo re  each of t h e  t h r e e  factors of L w i l l  have t h e  same s t r u c t u r e  and,  

i n  p a r t i c u l a r  

c. 

L =  

- 

N 

A 

L 

(2.17) 

/2) ,  r; = sin(c?! 121, 5 = sin(w.!2) and o i , w 2 , w 3  are t h e  where f = sin(w 

d u a l  F o u r i e r  v a r i a b l e s  ranging  from zero to  27~ and hence -1 C S,n,S C 1. 

1 2 3 

c. 

C l e a r l y ,  R w i l l  a l s o  have t h e  same type s t r u c t u r e  - s p e c i f i c a l l y  

c. 

R -  0 1 

0 I 

0 

N 

A 

R 

(2.18) 
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It fo l lows  t h a t  i-'i and ii-' w i l l  a l s o  have t h i s  type of s t r u c t u r e  .~ 
h h 

A - 1  A 

a l though  t h e i r  lower r i g h t  b locks  w i l l  d i f f e r ,  (l%-l) f (L  R ) .  Thus, 

f i n a l l y ,  we conclude t h a t  wh i l e  GA f G they do s h a r e  t h e  i n d i c a t e d  m a t r i x  Q 
s t r u c t u r e  with GAll - - GQl l .  I n  p a r t i c u l a r  

G b  = (2.19) 

where 

2i(At/Ax) [US F 1-5 + ( A x / A y ) v n m  + ( A x / A z ) w C m ]  

[ 1+2ia(At/Ax)uSJ] [ 1 + 2 i u ( A t / A y ) v n m [  1+2ia( At/Az)w< m3 1 5 
g11 = 1 + 

h 

The corresponding lower r i g h t  block of GQ w i l l  be I + (ii-'). 
We a r e  now ready t o  e s t a b l i s h  t h e  uncond i t iona l  i n s t a b i l i t y  of GA (and,  

hence,  a l s o  of GQ). GA may be w r i t t e n  a s  

-O-I  

, (2.20) 

where the  d e f i n i t i o n s  of g l l  and g are clear from (2.19). The i n s t a b i l i t y  

of scheme w i l l  be e s t a b l i s h e d  i f  w e  show t h a t  IIGAII > 1, wi th  t h e  squa re  of 

t h e  norm given by 

I I G  II 2 = U(GT,G,), 
A 

(2.21) 

a ( * )  being  the s p e c t r a l  r a d i u s  of t h e  des igna ted  mat r ix .  I n  our case 
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- -  
I 

81 1 - -I 
0 1  

0 1  

0 

0 -I= I 0 I - O 1  

and thus 

(2.22) 

If we can demonstrate that for any 0 < At there is a triplet 5, rl, 5 such 

that gll > 1 then instability has been established. In other words, we have 

just shown that if a scalar version of (2.10) and (2.11) is unstable then also 

the delta-form of the Backward Euler scheme is unstable for the equations of 

gas-dynamics (Euler's equations). The same argument, of course, holds true 

also for the LODQ algorithm. The scalar version of (2.10) which gives rise to 

an amplification factor g = gll is 

au au au au - + u - + v - + w - =  0, 
at ax aY az (2.23) 

where now U is the unknown scalar and u,v,w are scalar coefficients, which 

for the purpose of (linear) stability analysis may be taken as (locally) 

constant. We can now "stretch" the coordinates x,y, z through division 

respectively by u, (Ax/Ay)v, and (Ax/Az)w so that the corresponding 

amplification factor has the form (with A = At/Ax) 

define 
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b = 4a 22pp h (Erl 1 5 1-0 + TIS /- 1 - 0 ~  + S E D  &?) 

and thus rewrite (2.24) as: 

ia - - (1-b) - i(e-(a+l)a) g = l +  
1 + iaa - b - ie (1-b) - i(e-aa) 

and 

1-bI2 + e2 - 2(l+a)ea + (1+a)2a2 
(1-b)2 + e2 - 2aae + a2a2 1gI2 = ( 

(2.25) 

(2.26) 

For instability we require t o  show \gI2 > 1, or 

o r  

a[-2e + (1+2a)a] > 0. (2.27) 

This inequality is satisfied by an infinite number of triplets (E,rl,S). For 

example, take 0 < E < 1(0<w1<2n), TI = -c(w2 = -w3), then a = 2 ( X S m )  > 0 - - - 

and e = -8a3x3Er12&%-r12) < 0; the inequality is then satisfied for all 

- '/2 < a. (In real computation, of course, a > 0.) This completes the proof 

that GA, the amplification matrix for the delta-form of the three-dimensional 

approximate-factored Backward Euler scheme for the gas-dynamic equations has a 

norm exceeding unity and hence is unstable. A s  shown above, the argument 

holds also for GQ. 
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The question now is can one modify the algorithms (2.12) and (2.14) in 

such a way that, at least, gll G l? Success will not necessarily establish 

stability for the complete set of the equations of gas-dynamics (Euler 

equations) but at least if the scalar case is shown to be stabilized there is 

hope that this will hold true also for Euler's equations. We will carry out 

the manipulations in the Fourier space and when g = gll is stabilized we 

will inquire as to how these changes map into the physical space in which the 

algorithms (2.12) and (2.14) are written. Examination of (2.24) convinced us 

to change g in such a way that the modified amplification factor, & will 

have the form 

(2.28) 

Numerical tests were conducted for a =l/2 and 1 and for '/2 < B G 5 with 

-1 < S , n , 3  G 1 taken over this range by steps of A 6  = A n  = A 3  = 0.05; and 

various values of X ranging from 1 to 10'. Uniform stability (gm 1 for 

all S,n,< and A )  was found for K ranging between 0.05 and 0.5. We do not 

have analytical proofs for these bounds but the results of the numerical 

experimentation leave little doubt as to their validity. (Note that for 

>> 1 and upper bound on K is 2/3.) 

Next we'll consider what changes to introduce into the nonlinear 

nonsymmetrized version of (2.14) in order that the first variation of the new 

algorithm will have (in the scalar case) the amplification factor gm given 

by (2.28). 
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Taking note  of t he  f a c t  t h a t  C2 and E4 i n  Four i e r  space cor respond,  

r e s p e c t i v e l y ,  to -Ax2€i2/4 and Ax4d4/16 and s i m i l a r l y  f o r  V 2 , V 4 , 5  2 4  ,5 , 
X X 

we modify (2.14) as fo l lows:  

where 

and 

(2.29a) 

-h+l * + R V  , (2.29b) 
Az *+l KAx4 4 

Q = [ l  -- ( 6 ;  + 6; + 16241 Q 
16 

= ( I  + aAtAGxpx - f3(Ax2/4)6;)(I + a A t B 6  IJ - f i ( A ~ ~ / 4 ) 6 , ~ )  
Lm Y Y  

(2.30) 

(2.31) 

Not ice  t h a t  a t  s t eady  s t a t e  t h e  s o l u t i o n  v e c t o r  i s  t h e  newly de f ined  q u a n t i t y  

V and not  U ,  u n l i k e  the  case  i n  t h e  unmodified (and u n s t a b l e )  fo rmula t ion .  
2 2 

The a m p l i f i c a t i o n  ma t r ix  of (2.29) i s  

and f o r  t h e  s c a l a r  ca se  t h i s  reduces  t o  gm given by (2.28) which numerical  

experiments  have shown t o  be s t a b l e .  

I n  order  t o  s t a b i l i z e  t h e  three-dimensional  "delta"-form, equa t ion  (2 .12 )  

i s  modif ied as fo l lows:  
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-h+l 4 3  
KAX4 L [,54 + (9) 4 64 + (=) Az 64] -ii” + RV A , (2 .33)  

Z 
Lm(U -u 1 = -- 16 m x Ax Y 

t o  g ive  t h e  a m p l i f i c a t i o n  matrix 

3 

A t  s t e a d y  s ta te  ( i f  one is  achieved)  the v e c t o r  V s o l v e s  

(2 .34)  

(2.35) 

A 
r a t h e r  t han  RV = 0. The ques t ion  a r i s e s  as t o  t h e  e r r o r  in t roduced  i n t o  t h e  

s o l u t i o n  (2.35) by i t s  right-hand s i d e .  For t h e  s o l u t i o n  of (2.35) t o  be 

second-order a c c u r a t e  i t  is necessary  f o r  t he  r ight-hand s i d e  t o  be of 

O(Ax2). For U s u f f i c i e n t l y  smooth (e.g., V4< = O(1)) t h e  e r r o r  i s  
--. 

determined ,  f o r  l a r g e  A t ,  by the term of Lm of h i g h e s t  power i n  A t ,  

m u l t i p l i e d  by t h e  c o e f f i c i e n t  i n  f ron t  of i t .  S i m i l a r l y  one could g e t  a n  

e s t i m a t e  f o r  small A t .  Th is  argument then  p r e d i c t s  t h a t  (2.35) w i l l  y i e l d  

s t e a d y - s t a t e  s o l l i t i o n s  which are second-order a c c u r a t e  s p a t i a l l y  f o r  t h e  

fo l lowing  range of A: 

K 4N1/2 m’ - < A <  16N (2.36) 

where N i s  l/Ax. For nonuniform g r i d  t h i s  estimate w i l l  change somewhat, 

but  no t  m a t e r i a l l y .  This  e s t i m a t e  y i e l d s  a wide range of a v a i l a b l e  X f o r  

second-order accuracy.  Numerical evidence i n  Sec t ion  4 suppor t s  t h e  estimate 

(2.36) and i n d i c a t e s  t h a t  t h e s e  l i m i t s  exceed t h e  p r a c t i c a l  range. 
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3. PROGRAMMING CONSIDERATIONS 

Before embarking on a discussion of numerical results obtained with the 

scheme proposed in Section 2, we will first discuss some aspects of 

implementing the scheme. In the numerical results to be presented in Section 

4 ,  the algorithm defined in Eqs. (2.29) - (2.31) was used, but in a slightly 

modified form. The first modification concerned the quantity V defined by 

Eq. (2.31). In the computer program V was defined as 

A 

-L 

+l Ax2 AY Az2 + i;" = p u  - (1-11) - [ 6 2  + (-) 62 + (--#]u , 
4 x A x y  Ax z 

a modification which allowed us to examine the effect of the discrete 

Laplacian operating on U both on the accuracy and stability of the scheme. 

Again, if steady state is achieved, it is the quantity defined as above 

which satisfies the steady difference equations in the sense of Eq. (2.35). 

The numerical tests described in connection with Eq. (2.28) were extended to 

include 0 4 P 1. All stable runs remained stable except for u = 1 which 

destabilized the scheme. 

A 

$ 

An additional difficulty that had to be overcome in the implementation of 

the stabilized LODQ algorithm was the reintroduction of the Yanenko boundary 

condition errors [41, [61 through the terms proportional to K in Eq. 

(2.29b). This difficulty can be circumvented by rewriting (2.29b) in the form 

Use of the corrector step of the algorithm in this form, although formally 

identical to (2.29b) on an infinite domain, prevents introduction of O(1) 

contributions to the residual on grid lines near computational domain 

boundaries (see [ 4 1 ) .  
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The nex t  p o i n t  war ran t ing  d i s c u s s i o n  i n  t h i s  s e c t i o n  concerns  t h e  

implementat ion of t h e  a lgo r i thm near  boundar ies .  On g r i d  l i n e s  immediately 

a d j a c e n t  t o  boundar ies  one c a n n o t . d i r e c t l y  apply  Eq. (3.2) as th i s  would 

r e q u i r e  d a t a  from o u t s i d e  t h e  domain ( s ince  t h e  f o u r t h  d i f f e r e n c e  o p e r a t o r s  as 

d e f i n e d  h e r e i n  r e q u i r e  a f i v e  p o i n t  s t e n c i l ) .  On g r i d  l i n e s  immediately 

I a d j a c e n t  t o  domain boundar ies ,  a second-order a c c u r a t e  s i x  p o i n t  uncentered  

d i f f e r e n c e  o p e r a t o r  is used i n  l i e u  of t h e  c e n t e r e d  f i v e  p o i n t  o p e r a t o r  as 

r equ i r ed .  

I 

In a d d i t i o n ,  Lm$+', which is eva lua ted  e x p l i c i t l y  as 

Lm$+l = L1 [L (L T P + l ) ]  ( 3 . 3 )  

i s  r e q u i r e d  a t  a l l  p o i n t s  on t h e  g r i d  i n c l u d i n g  boundary p o i n t s  i n  o r d e r  t o  

o p e r a t e  on t h i s  q u a n t i t y  w i t h  t h e  d i s c r e t e  biharmonic.  W e  c o n s i d e r  a 

computa t iona l  domain d i s c r e t i z e d  uniformly i n  C a r t e s i a n  space  w i t h  J * K * L  

g r i d  p o i n t s  such t h a t  

The e v a l u a t i o n  of (3 .3 )  is  accomplished i n  t h e  c a l c u l a t i o n s  p re sen ted  h e r e i n  

as fo l lows:  

( i )  Eva lua te  L3U over  t h e  range 1 G j < J, 1 < k < K and 

2 R < L-1 us ing  c e n t r a l  d i f f e r e n c e s .  E v a l u a t e  ++l f o r  1 < j < J,  

1 G k < K and R = 1 ,  L us ing  second-order a c c u r a t e  forward o r  backward 

d i f f e r e n c e s  as r equ i r ed .  

( i i )  Eva lua te  L 2 ( L 3 P + l )  f o r  1 G j G J,  2 G k G K-1 and 1 G II G L. 

( i i i )  Eva lua te  Ll[L2(L3$+1)] f o r  2 < j G J-1 ,  2 G k < K-1, 1 < R G L. 
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(iv) Use second-order accurate extrapolation to evaluate L 3" from m 

interior values for j=l,J, k=l,K, R=l,L. 

Note that the added complexity of calculating Lm?+' is required only by the 

new algorithm in the LODQ form which was the case considered here. For the 

new algorithm in the delta-form, an evaluation of L V4$ is required but 

details of the evaluation of this term were not studied. 

m 

The final point to be considered is the application of boundary 

conditions. Since it is the vector V which satisfies the steady difference 

equations over the domain, the appropriate boundary conditions for V are the 

boundary conditions derived from the steady continuum problem. For a first 

order system of the type considered here modeled with central differences, two 

types of boundary conditions can arise, here termed physical and numerical. 

Physical boundary conditions arise from application of the continuum boundary 

conditions to the discrete problem while numerical boundary conditions arise 

from the need to close the system of difference equations on computational 

domain boundaries not corresponding to physical boundaries. In the 

calculations presented in Section 4 the physical boundary conditions were 

always taken t o  be a specification of V over some segment of the boundary of 

the computational domain. The numerical boundary conditions were always taken 

to be a second-order implicit extrapolation of V. 

-L 

A 

A 

2 

A 
In addition to boundary conditions on V, the new algorithm requires 

boundary data on U in either LODQ o r  A forms. In the present work these 

conditions on U were taken from the conditions on V. Where physical 

boundary conditions were applied the condition on U was taken to be the same 

as the condition on V. Application of numerical boundary conditions was, 

however, somewhat more complicated. Let US consider the plane j = J to be 

A 

A A 

A 

A 



an artificial computational domain boundary at which we apply 

= 2 P  -+ J-1, k, R 5-2, k,R * 
* 
J,k,R (3.5) 

A 
If we were to directly substitute into Eq. (3.5) the definition of V in 

would arise. Thus, a terms of U, Eq. (3.1), a formula involving UJ+l,k,R -L -h 

boundary condition for Un cannot be derived solely 
J,k,R 

condition on ? but instead, an additional numerical 

on i;" must be specified. This result is not surprising 

J,k,R' 

from the boundary 

boundary condition 

since Eq. (2.29b) 

written entirely in terms of ? and spreads the stencil of ? to five 

points in each direction, indicating the need for an additional numerical 

boundary condition on 3. This extra condition was here taken to be 

-+n -h = 2ii" - 
'J+1, k, R J,k,R 'J-l,k,R 

Substitution of Eqs. (3.1) and (3.6) into Eq. (3.5), expanding the definitions 

of the operators and collecting terms yields the following condition for 

1 -h -n -%l +l 

(1-p)Ax26~(uJ-l,k+l,R + 'J-l,k-l,R + 'J-l,k,S+l + UJ-l,k,L-l! 
+ -  

4 

-Ln consistent with 
J,k,R 

Equation (3.7) represents the boundary condition on U 
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bo th  Eqs. (3.5) and (3.6). Implementation of t h i s  boundary c o n d i t i o n  in terms 

of t h e  a lgo r i thmic  i n t e r p r e t a t i o n  of Eq. (2.29a) would couple  a d j a c e n t  

t r i d i a g o n a l  i nve r s ions .  This  undes i r ab le  p rope r ty  can be e l imina ted  by no t ing  

t h a t  t h e  q u a n t i t y  i n  b r a c k e t s  in t h e  l a s t  t e r m  on t h e  r i g h t  hand s i d e  of (3.7) 

t o  0(Ay2,Az2). Thus, t h e  f i n a l  form of t h e  -Ln 
can be replaced by 4 u ~ - l , k , ~  

boundary condi t ion  used in t h e  p r e s e n t  work i s  

4. NUMERICAL RESULTS 

4.1. T e s t  Problem 

The test problem examined i n  t h e  p r e s e n t  work involved t h e  s o l u t i o n  of 

Eq. (2.23) on t h e  cube 0 G x ,y , z  C 2n wi th  u = v = w = 1 and s u b j e c t  t o  

s t e a d y  boundary d a t a  on t h r e e  f a c e s  of t h e  cube. These d a t a  and t h e i r  

l o c a t i o n  were taken t o  be 

u = cos(-y) + cos(y-2) + cos(-z)  

u = cos(x) + cos(-2) + cos(x-2) 
O G  x, Z C  2T 

u = cos(x-y) + cos (y )  + c o s ( x )  

The exac t  steady s o l u t i o n  t o  t h i s  problem is given  by 
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u = cos(x-y) + cos(y-z) + cos(x-z) .  

Numerical s o l u t i o n s  t o  t h e  s t eady  problem were ob ta ined  by s o l v i n g  Eq. (2.23) 

i n  t i m e  u n t i l  an asymptot ic  s t eady  state w a s  reached.  The i n i t i a l  d a t a  w a s  

t aken  t o  be 

u = cos(x-y) + cos(y-2) + cos(x-z) + xyz(x-2a) (y-2ll) (z-2ll) , 
0 x ,y ,z  G 2T. 

The s t e a d y  s t a t e  w a s  assumed t o  be reached when L2 norm of t h e  r e s i d u a l  

( i -e . ,  RV") w a s  reduced below a set to le rance .  The accuracy of t h e  r e s u l t a n t  

s o l u t i o n  w a s  measured by c a l c u l a t i n g  t h e  maximum e r r o r  and t h e  L2 norm of 

t h e  e r r o r  between t h e  exac t  and d i s c r e t e  s o l u t i o n s .  

4.2. Discuss ion  of R e s u l t s  

I n  o r d e r  t o  assess t h e  accuracy of t h e  three-dimensional  a lgo r i thm given  

by Eq. (2.29) - (2.31) a series of runs were made f o r  t h e  test problem f o r  a 

sequence of g r i d s  for K = 0.1, a vaiue s u f f i c i e n t  io i n s u r e  s t a b i l i t y .  These 

r e s u l t s  are summarized i n  F igure  1 where second-order accuracy is  seen t o  be 

obta ined .  

The e f f e c t  of on t h e  convergence rate of t h e  scheme is shown i n  

F igu re  2. Note t h e  s t r o n g  dependence of t h e  convergence ra te  on X and t h e  

f a c t  t h a t  t h e  optimum X f o r  convergence i s  X E 1. S i m i l a r  r e s u l t s  have 

been r e p o r t e d  elsewhere.  

F i n a l l y ,  i n  F igu re  3, t h e  e f f e c t  of on t h e  s o l u t i o n  accuracy f o r  

f i x e d  K f 0 is shown. The accuracy as d e f i n e d  i n  t h e  las t  paragraph of 

S e c t i o n  4.1 i s  a l s o  compared wi th  the accuracy  of t h e  K - 0 case .  Note t h a t  
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a l though  as a pure i n i t i a l  va lue  s o l v e r  t h e  a lgo r i thm is u n s t a b l e  f o r  K = 0, 

f o r  t h e  complete range of A, i t  appears  t h a t  t h i s  case can be s t a b i l i z e d  by 

t h e  boundary condi t ions .  Numerical s o l u t i o n s  obta ined  i n  t h e  range X = 0 ( 1 )  

wi th  K = 0 a r e  thus  taken  t o  be s o l u t i o n s  of t h e  s t e a d y  d i f f e r e n c e  o p e r a t o r ,  

RVn = 0. Note t h e  f a c t  t h a t  t h e r e  is a minimum i n  e r r o r  produced by t h e  

scheme ( 2 . 2 9 )  - ( 2 . 3 1 )  which is lower than  t h a t  produced by t h e  scheme w i t h  

K = 0. This  f a c t  can be expla ined  by no t ing  t h a t  t h e  tempora l ly  i n c o n s i s t e n t  

terms i n  the  a lgo r i thm have c o e f f i c i e n t s  Hence a t  small  

v a l u e s  of A ,  t h e  X - l  terms w i l l  dominate t h e  e r r o r  wh i l e  t h e  X 2  terms 

w i l l  come t o  dominate a t  l a r g e r  v a l u e s  of A. Thus, t h e  e r r o r  should have a 

minimum va lue  a t  some v a l u e  of X .  It should a l s o  be noted t h a t  both t h e  

a n a l y s i s  and computat ional  evidence v e r i f y  t h a t  t h e  parameters  l~ and B 

have no e f f e c t  on t h e  s t eady  s o l u t i o n .  

X - l ,  1, A ,  X . 

A f i n a l  po in t  should be made about s t a b i l i t y  of t h e  a lgo r i thm wi th  

K = 0,  P = 1 and B = 0 ( i . e . ,  t h e  b a s i c  a lgo r i thm) .  The computa t iona l  

ev idence  obtained i n  t h e  p re sen t  i n v e s t i g a t i o n  i n d i c a t e s  t h a t  t h e  i n s t a b i l i t y  

of t h i s  i n t e r i o r  p o i n t  scheme is  q u i t e  mild.  On f i n i t e  g r i d s  i t  i s  p o s s i b l e  

t o  o b t a i n  s o l u t i o n s  f o r  small A ,  a l though t h e  maximum s t a b l e  v a l u e  of 

appea r s  t o  decrease  as t h e  g i r d  i s  r e f i n e d .  As an example, on a g r i d  of 

33X33X33 f o r  t h e  test problem an e f f e c t i v e  s p e c t r a l  r a d i u s  of 1.002 (def ined  

as By c o n t r a s t ,  t h e  new a lgo r i thm 

w a s  found t o  have a s p e c t r a l  r a d i u s  below u n i t y  f o r  1 X < lo6 .  The b a s i c  

scheme i s  a l ready  extremely weakly u n s t a b l e  a t  X = 5 ,  however, and i n  e f f ec t  

w i l l  never  converge o r  d ive rge ,  i.e., t h e  e f f e c t i v e  s p e c t r a l  r a d i u s  of t h e  

scheme i s  uni ty .  S ince  t h e  i n s t a b i l i t y  of t h e  i n t e r i o r  p o i n t  scheme i s  s o  

mi ld ,  t h e  i m p l i c i t  damping in t roduced  by t h e  parameter  B i s  ve ry  e f f e c t i v e  

i n  a c c e l e r a t i n g  t h e  convergence of t h e  scheme when i t  is s t a b l e ,  b u t  t h e  

(AQnmax /AQ:ax)l'n) w a s  found a t  X = 100. 
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parameter 

in the steady state, is most effective in extending the stable range of 

K, which introduces a form of explicit damping that does not vanish 

A. 

5. SUMMARY AND DISCUSSION 

The following main reuslts were obtained in this paper: 

1. It has been shown that both the LODQ (2.14) and the Beam-Warming 

(2.11) algorithms for the Euler equations of gas-dynamics in three-dimensions 

are unconditionally (linearly) unstable. 

2. A stable algorithm for three-dimension is proposed. It does not have 

any more implicit operations than either the LODQ or Beam-Warming schemes. 

3.  This stable algorithm is second-order accurate for a wide range of 

the Courant number. 

4 .  It was observed that all three algorithms (LODQ, Beam-Warming and the 

new one) have a convergence rate to steady state which is not monotonic with 

(unlike an unfactored implicit algorithm). We were surprised to find that 

the optimal Courant number X for which convergence to steady state is 

fastest is of order unity for both two-dimensional and three-dimensional 

cases. 

The observation mentioned in the last point above raises the issue of the 

efficacy of implicit factored schemes verses explicit ones. Clearly for 

problems with uniform mesh it would seem that the operation count and CPU time 

favor explicit algorithms. It is not yet clear which way to go in the case of 

highly stretched mesh, especially if time accuracy is not important. 

All of the above evidence and analysis for the new algorithm were for the 

linear scalar wave equation. Clearly much experimentation is necessary to 

explore its application to the Euler equations in three-dimensions with 

uniform and non-uniform grids. 
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Figure 2. Effect of Courant number on i t e r a t i v e  convergence of s tab le  

i m p l i c i t  scheme for three-dimensional wave equation. 



W > 

1.0 

.8 

.6 

. 4  

.2 

0 

[[E max ( . = O . l ) ]  / [ E  max ( ~ = 0 ) ]  

0 I 
El 

E ( K  = O ) =  0.0952652 max 

3-D; N = 32; A = 1 

2 3 
A = AtlAx 

4 5 
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impl i c i t  scheme for three-dimensional wave equation.  


